Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

MELDUNG/485: Nachrichten aus Forschung und Lehre vom 23.12.11 (idw)


Informationsdienst Wissenschaft - idw - Pressemitteilungen


→  "Farbstoff mit Signalwirkung
      Deutsche Forschungsgemeinschaft unterstützt neue Forschergruppe "Häm und Häm-Abbauprodukte"
→  "Super Resolution Mikroskopie bietet neue Möglichkeiten für die Pharmaforschung
→  "Gemeinsam das Hirn verstehen
      2. Runde Transatlantischer Kooperationen in Computational Neuroscience


*


Friedrich-Schiller-Universität Jena - 22.12.2011

Farbstoff mit Signalwirkung

Deutsche Forschungsgemeinschaft unterstützt neue Forschergruppe der Universität Jena

Dass die Farbe Rot eine besondere Signalwirkung hat, ist allgemein bekannt und letztlich für die Farbe von Feuerwehren, Verbotsschildern oder Warnhinweisen verantwortlich. Dass aber auch der rote Blutfarbstoff - das eisenhaltige Molekül mit dem Namen "Häm" - besondere Signalwirkungen ausübt, das beginnt die Wissenschaft gerade erst zu entdecken.

"In Verbindung mit Eiweißen in den roten Blutkörperchen bildet Häm das Hämoglobin, das für die Sauerstoffaufnahme im Blut und somit für unser Leben unentbehrlich ist", unterstreicht Prof. Dr. Stefan Heinemann von der Friedrich-Schiller-Universität Jena. Doch der Farbstoff könne noch viel mehr, so der Inhaber des Lehrstuhls für Biophysik weiter, der mit seinem Team bereits seit einigen Jahren Häm und seine Abbauprodukte intensiv erforscht. In den kommenden drei Jahren kann die interdisziplinäre Forschergruppe ihre Arbeiten weiter intensivieren: Die Deutsche Forschungsgemeinschaft (DFG) unterstützt das erfolgreiche Projekt ab kommendem Frühjahr mit insgesamt rund zwei Millionen Euro.

In der neuen DFG-Forschergruppe "Häm und Häm-Abbauprodukte" (FOR 1738) arbeiten Wissenschaftler der Jenaer Universität und ihres Klinikums, des Jenaer Leibniz-Instituts für Altersforschung (Fritz-Lipmann-Institut, FLI) und des Instituts für Photonische Technologien (IPHT), der Universität Bonn sowie der University of Pennsylvania zusammen. Das Team setzt sich aus Experten aus der Neurologie, der Intensivmedizin, der molekularen Physiologie und Biophysik, der Biochemie, der Biophotonik sowie der synthetischen und analytischen Chemie zusammen.

Im Mittelpunkt der Forschergruppe stehen die alternativen Funktionen und Signalmechanismen von Häm und seinen Abbauprodukten. "Häm-Abbauprodukte, wie zum Beispiel Bilirubin und Kohlenmonoxid, wurden bisher als reiner Stoffwechselabfall betrachtet, den der Körper entsorgen muss", erläutert Prof. Heinemann, der Sprecher der neuen Forschergruppe ist. "In neueren Untersuchungen stellen sich Häm und Häm-Abbauprodukte allerdings in zunehmendem Maße als zelluläre Signalmoleküle heraus, die eine Vielzahl von Körperfunktionen beeinflussen." Biologische Funktionen und medizinische Relevanz dieser Moleküle sind bisher jedoch weitgehend unerforscht. "Unsere eigenen Untersuchungen zeigen, dass Häm die Funktionsweise von Eiweißmolekülen reguliert, die für den Transport von Ionen durch Zellmembranen zuständig sind", erläutert Prof. Heinemann. Dies spiele eine wichtige Rolle bei der Regulation des Blutdrucks und könne z. B. zu fatalen Komplikationen nach einem Schlaganfall führen.

Den Abbau des Farbstoffs Häm, erläutert der Jenaer Biophysiker, könne übrigens jeder ganz leicht an sich selbst beobachten. "Ein Bluterguss, der zunächst dunkelblau bis violett erscheint, ändert im Laufe einiger Tage seine Farbe zunächst zu grün und schließlich zu gelb." Verantwortlich dafür sind die Farbstoffeo. Biliverdin (grün) beziehungsweise Bilirubin (gelb).

Weitere Informationen sind zu finden unter:
www.hhdp.uni-jena.de

Kontakt:
Prof. Dr. Stefan H. Heinemann
Institut für Biochemie und Biophysik
Zentrum für Molekulare Biomedizin (CMB)
Friedrich-Schiller-Universität Jena
E-Mail: stefan.h.heinemann[at]uni-jena.de

Weitere Informationen finden Sie unter
http://www.hhdp.uni-jena.de

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/de/institution23

Quelle: Friedrich-Schiller-Universität Jena, Dr. Ute Schönfelder, 22.12.2011


*


Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH - 22.12.2011

Super Resolution Mikroskopie für Pharmaforschung

Patente für multiple 3D Komplexmarkierung erteilt

Wirkungsweise von Medikamenten in Körperzellen wird transparent - Mit der LIMON 3D Super Resolution Mikroskopie (LIght MicroscOpical Nanosizing) erschließt Prof. Dr. Dr. Christoph Cremer neue Möglichkeiten für die Pharmaforschung. 3D Molekülkomplexe sogenannter Biomolekularer Maschinen, Ansatzpunkte von Medikamenten, können dadurch in vivo untersucht werden. "Mit den erteilten Patenten haben wir eine Super Resolution Mikroskopie, die für die molekulare Biotechnologie, Pharmaindustrie und personalisierte Medizin von großer Bedeutung ist", so Dr. Andrea Nestl, als Innovationsmanagerin des Technologie-Lizenz-Büros (TLB) verantwortlich für die Patentstrategie und die Kommerzialisierung.

Biomolekulare Maschinen sind hochkomplexe Nanostrukturen, die in den Körperzellen grundlegende Funktionen erfüllen und aus mehreren großen Molekülen bestehen. Sie sind je nach Funktionszustand in einer ganz bestimmten Weise dreidimensional im Raum angeordnet. Beispielhaft sind die Nukleosomen, die es der zwei Meter langen Trägerin der Erbinformation, der DNS, ermöglichen, sich in den Zellen des Körpers so zu falten, dass sie in einem Raum von wenigen Millionstel Millimetern Durchmesser untergebracht wird und als Informations- und Steuerzentrum dienen kann.

Mit LIMON 3D in Kombination mit LIMON Komplexmarkierung von Professor Christoph Cremer ist es möglich, einzelne Proteine oder Nukleinsäuren, die im 3D-Molekülkomplex sogenannter Biomolekularer Maschinen versteckt sind, zu markieren und sichtbar zu machen, ohne den Komplex zu zerstören. Bislang bestand das Problem darin, die Komplexe in vielen Fällen zerstören zu müssen, um die darin befindlichen einzelnen Makomoleküle genau analysieren zu können. Alternativ musste man auf Computer-Simulationsmodelle oder auf aufwändige Kernresonanzverfahren zurückgreifen, um sich die dreidimensionale Struktur solcher Komplexe vorstellen zu können. Das mit einem europäischen Patent geschützte neue LIMON-Komplexmarkierungs-Verfahren erlaubt die Identifizierung und räumliche Positionierung von einzelnen Komponenten des Komplexes in seiner ursprünglichen, also biologisch relevanten Zusammensetzung.

Neben der üblichen Markierung eines Moleküls mit nur einem Fluoreszenzmolekül besteht nun auch die Möglichkeit, das Zielmolekül mit einer Vielzahl von Fluoreszenzmarkern desselben Typs an mehreren Stellen zu markieren. Das ist besonders dann von großer Bedeutung, wenn man einen Komplex untersuchen will, bei dem nicht alle Bindestellen für Sonden zur Sichtbarmachung der einzelnen Partner zugänglich sind.

"Die pharmazeutische Industrie kann auf diese Weise die Wechselwirkungen der Biomolekularen Maschinen mit pharmazeutisch aktiven Verbindungen gezielt verfolgen und grundlegende mechanistische Fragen zu Wirkstoffen beantworten", betont Dr. Andrea Nestl, die im Auftrag der Universität Heidelberg die Patentierungs- und Vermarktungsstrategie entwickelt. Dadurch wird die Wirkungsweise von Arzneistoffen in den Zellen transparent und die kostspielige Entwicklung von Medikamenten, welche sich im Bereich von 500 Millionen bis zu 2 Milliarden US-Dollar bewegt und in der Regel 10 bis 12 Jahre dauert, kann in kürzerer Zeit und kostengünstiger erfolgen.

Die 3D Super Resolution Mikroskopie LIMON ist ein hervorragendes Instrument zur Entwicklung und Validierung von therapeutisch wirksamen Substanzen. Mit dem Verfahren wurde es zum Beispiel erstmals ermöglicht, genau das Genprodukt zu untersuchen, welches für 20 Prozent des vererbbaren metastasierenden Brustkrebses verantwortlich ist; auf diese Weise soll die bestehende Therapie über Herceptin patientenspezifisch optimiert werden. Aufgrund individueller genetischer Ausstattung sprechen Patienten mit identischer Diagnose auf die Behandlung mit dem gleichen Medikament oft sehr unterschiedlich an. Die personalisierte Medizin untersucht und berücksichtigt alle diagnostischen Möglichkeiten zur Charakterisierung der persönlichen Besonderheiten. Hierbei werden die LIMON Super Resolution Mikroskopie Patente einen wesentlichen Beitrag leisten. Die Ergebnisse der Brustkrebsuntersuchung wurden kürzlich in der angesehenen Fachzeitschrift Journal of Microscopy publiziert (Rainer Kaufmann, Patrick Müller, Georg Hildenbrand, Michael Hausmann & Christoph Cremer: Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy Journal of Microscopy 242: 46-54 (2011)). Professor Christoph Cremer verknüpft für seine LIMON 3D Super Resolution Mikroskopie zwei seiner ebenfalls von TLB patentierten 2D Superresolution Mikroskopie-Verfahren miteinander: die Lokalisationsmikroskopie SPDM (Spectral Precision Distance Microscopy) sowie die strukturierte Beleuchtung SMI (Spatially Modulated Illumination). Die Hauptpatente zu LIMON bestehen in Europa und den USA. Mit der europäischen Teilanmeldung ist das dritte Patent der Patentfamilie LIMON erteilt worden.

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/de/image159731
Auch in der pharmazeutischen Forschung und der personalisierten Medizin wird die Super Resolution Mikroskopie LIMON (Kombination von SPDM and SMI) in der Zukunft eine wichtige Rolle spielen Abbildung: 3D Nanoskopie von Brustkrebs mit Her3 und Her2, dem Zielmolekül des Brustkrebs-Medikaments Herceptin

Christoph Cremer
ist Professor und Ordinarius für Angewandte Optik & Informationsverarbeitung am Kirchhoff Institut für Physik, sowie am Institut für Pharmazie & Molekulare Biotechnologie (IPMB), ebenfalls an der Universität Heidelberg, und Gruppenleiter im Bereich Super Resolution Microscopy am Institut für Molekulare Biologie gGmbH (IMB) an der Universität Mainz; außerdem ist er wissenschaftliches Mitglied am US-Amerikanischen Jackson Laboratory in Bar Harbor/Maine. Professor Christoph Cremer ist langjähriger Koordinator des BMM-Netzwerkes "BioMolekulare Maschinen/BioMolekulare Mikroskopie" der Bioregion Rhein-Neckar, an dem zahlreiche Heidelberger Arbeitsgruppen aus den Bereichen Medizin, Mathematik/Informatik, Chemie, Pharmazie, Physik sowie Biologie beteiligt sind. Zielsetzung ist die quantitative Analyse und Modellierung von "Biomolekularen Maschinen" außerhalb der Zelle und in der lebenden Zelle selbst.

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/de/institution1616

Quelle: Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH, Dr. Regina Kratt, 22.12.2011


*


Nationales Bernstein Netzwerk Computational Neuroscience - 21.12.2011

Gemeinsam das Hirn verstehen

2. Runde Transatlantischer Kooperationen in Computational Neuroscience

Die Deutsch-US-amerikanische Kooperation auf dem Gebiet der Computational Neuroscience wird weiter ausgebaut. Sechs neue Projekte werden in den kommenden drei Jahren mit insgesamt 2,6 Millionen Euro gefördert. Die Projekte zeichnen sich durch eine enge Verzahnung experimenteller und theoretischer Ansätze bei der Erforschung des Gehirns aus. Dies ist die zweite Runde einer gemeinsamen Deutsch-Amerikanischen Förderinitiative des Bundesministeriums für Bildung und Forschung (BMBF), der National Science Foundation (NSF) und des National Institutes of Health (NIH).

Die geförderten Projekte bearbeiten folgende Themen:

Für Migräneanfälle sind vermutlich krankhaft langanhaltende Nervenentladungen in der Großhirnrinde verantwortlich. Dr. Markus Dahlem von der Technischen Universität Berlin möchte mit Kollegen der Pennsylvania State University, College State, herausfinden, ob sich diese durch den Einfluss Regelkreis-gesteuerter elektrischer Felder kontrollieren lassen. Dies werden sie sowohl im Computer- als auch im Tiermodell untersuchen.

Hirnaktivitätsmuster, die mittels bildgebender Verfahren gemessen wurden, unterscheiden sich selbst bei identischer Stimulation zwischen Individuen. Dr. Michael Hanke von der Otto-von-Guericke-Universität Magdeburg möchte dafür gemeinsam mit Kollegen vom Dartmouth College, Hanover, und der Princeton University, Princeton, neue Methoden zu besseren Vergleichbarkeit erarbeiten. Damit sollen individuelle Muster ineinander übersetzt und analysiert werden und sogar intrinsische Prozesse wie soziale Kognition vergleichbar werden.

Wie schafft es das Gehirn, die dreidimensionale Welt aus der zweidimensionalen Abbildung auf unserer Netzhaut so perfekt zu rekonstruieren? Prof. Roland Fleming der Justus-Liebig-Universität Gießen und seine Kollegen von der Yale University, New Haven, prüfen, ob Zellen, welche die Intensitätsverläufe in einem Bild erkennen, uns die dreidimensionale Wahrnehmung der Welt ermöglichen. Psychophysische Experimente und Computermodelle sollen dabei zum Einsatz kommen.

Sinnessysteme müssen hocheffizient komplexe Muster und Eigenschaften aus einer riesigen Zahl an Informationen filtern. Wie dies im Riechkolben geschieht, werden Dr. Andreas Schaefer vom Max-Planck-Institut für medizinische Forschung, Heidelberg, gemeinsam mit Forschern der Cornell University, Ithaca, untersuchen. Unter anderem mit optogenetischen Verfahren wird die Funktion hemmender Zellen bei der Kontrastverschärfung von Informationen untersucht.

Wie hängen Struktur und Funktion im dendritischen Teil einer Nervenzelle zusammen? Das möchten Prof. Stefan Remy vom Deutschen Zentrum für Neurodegenerative Erkrankungen, Bonn, und Wissenschaftler von der Northwestern University, Evanston, der Stanford University, Stanford, und dem Janelia Farm Research Campus HHMI, Ashburn, klären. Mit einer Kombination neuartiger mikroskopischer Verfahren werden sie Zellen des Hippocampus untersuchen, die für Erinnerung und weitere kognitive Prozesse eine wichtige Rolle spielen.

Wie schafft es das Gehirn mit denselben Neuronen viele unterschiedliche Leistungen zu erbringen? Prof. Cornelius Schwarz vom Werner Reichardt Zentrum für Integrative Neurowissenschaften, Tübingen, wird mit Wissenschaftlern der Georgia Tech and Emory University, Atlanta, diese Frage anhand des Tasthaarsystems der Ratte untersuchen. Mit Hilfe statistischer Modelle soll die neuronale Kodierung beschrieben werden. Damit versuchen die Forscher aufzuzeigen, wie Sinnesleistungen an momentane Wahrnehmungsanforderungen angepasst werden.

In der ersten Förderrunde 2010 waren fünf Projekte für eine Förderung mit insgesamt 3,4 Millionen Euro ausgewählt worden. In Deutschland sind die Projekte in das Nationale Bernstein Netzwerk für Computational Neuroscience (NNCN) integriert. Das NNCN wurde vom BMBF mit dem Ziel gegründet, die Kapazitäten im Bereich der neuen Forschungsdisziplin Computational Neuroscience zu bündeln, zu vernetzen und weiterzuentwickeln. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen finden Sie unter
http://www.nncn.de
Nationales Bernstein Netzwerk Computational Neuroscience

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/de/institution1019

Quelle: Nationales Bernstein Netzwerk Computational Neuroscience, Johannes Faber, 21.12.2011


*


Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 24. Dezember 2011