Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → ASTRONOMIE

INSTRUMENTE/266: Neue Methode erschließt Exoplanetenchemie auch kleineren Teleskopen (idw)


Max-Planck-Institut für Astronomie - 04.02.2010

Neue Methode erschließt Exoplanetenchemie auch kleineren Teleskopen


Eine Gruppe von Astronomen, der auch Forscher des Max-Planck-Instituts für Astronomie angehören, hat eine neue Methode zur Untersuchung der Atmosphären von Exoplaneten (Planeten, die andere Sterne umkreisen als die Sonne) entwickelt und getestet. Damit werden solche Messungen erstmals auch Beobachtern mit vergleichsweise kleinen Teleskopen (Spiegeldurchmesser einige Meter) zugänglich. Die ersten Beobachtungen mit der neuen Methode lieferten grundlegend neue Erkenntnisse über die Eigenschaften von Exoplanetenatmosphären. Die Ergebnisse werden am 4. Februar 2010 in der Fachzeitschrift Nature veröffentlicht.

Untersuchungen der chemischen Zusammensetzung der Atmosphären von Exoplaneten bedienen sich der Spektroskopie: der systematischen Untersuchung des Lichts, das ein Sternensystem bei den verschiedenen Farben (Wellenlängen) aussendet. Bislang wurden für solche

Untersuchungen Weltraumteleskope oder die größten und fortschrittlichsten bodengebundenen Teleskope der Welt benötigt (vgl. MPIA-Pressemitteilung 2010-01-13). Jetzt macht eine neue Methode zur Datenauswertung, die eine Gruppe von Astronomen aus den Vereinigten Staaten, Großbritannien und Deutschland entwickelt und getestet hat, die Exoplaneten-Spektroskopie deutlich kleineren (und weiter verbreiteten) bodengebundenen Teleskopen zugänglich.

Für die Entwicklung der neuen Methode benötigten die Forscher gut zwei Jahre - danach aber konnten sie die spektroskopischen Beobachtungen an dem Exoplaneten HD 189733 b, die sie 2007 mit einem 3-Meter-Teleskop vorgenommen hatten, angemessen auswerten und in der Atmosphäre des Planeten das Vorkommen spezifischer Moleküle wie Methan und Kohlendioxid nachweisen. Der Planet, ein Gasriese ähnlich dem Jupiter, umkreist 63 Lichtjahre von der Erde entfernt den Stern HD 189733 A im Sternbild Fuchs (Vulpecula). Dabei konnten die Astronomen einen Teil des Spektrums aufnehmen, der mit heutigen Weltraumteleskopen nicht beobachtet werden kann.

Von der Erde aus gesehen verschwindet der Planet HD 189733 b periodisch hinter seinem Heimatstern. Das Spektrum des Planeten lässt sich bestimmen, indem man das von dem System direkt vor einer solchen "Planetenfinsternis" empfangene Licht mit dem während der Finsternis empfangenen Licht vergleicht. Allerdings sorgen Turbulenzen in der Erdatmosphäre (die auch für das nächtliche Funkeln der Sterne verantwortlich sind) für Störungen, deren Einfluss sich nur schwer berücksichtigen lässt. Jeroen Bouwman vom Max-Planck-Institut für Astronomie erklärt: "Mit einer neu entwickelten Kalibrationsmethode können wir die Lichtveränderungen, die sich durch die

Planetenfinsternis ergeben, von den Lichtveränderungen durch atmosphärische Turbulenzen und von Störsignalen des Detektors unterscheiden." Zuvor waren Messungen dieser Art nur mit Hilfe von Weltraumteleskopen möglich gewesen, deren Beobachtungszeit freilich streng rationiert ist. Nun sind sie mit bodengebundenen Teleskopen mit Spiegeldurchmessern bis hinunter zu einigen Metern durchführbar, von denen es weltweit einige Dutzende gibt - und dies ohne die Notwendigkeit spezialisierter Spektrografen.

Der Erstautor der Studie, Mark Swain vom Jet Propulsion Laboratory der NASA (ein ehemaliger Gastwissenschaftler am MPIA) erklärt weiter: "Dass wir unsere neuen Ergebnisse mit einem vergleichsweise kleinen, bodengebundenen Teleskop gewinnen konnten, ist sehr aufregend. Denn es bedeutet, dass die größten bodengebundenen Teleskope mit Hilfe unserer neuen Methode in der Lage sein müssten, die Atmosphären erdähnlicher Planeten zu untersuchen." Untersuchungen der chemischen Eigenschaften erdähnlicher Planeten sind ein wichtiger Schritt für die Suche nach bewohnbaren Exoplaneten, oder sogar nach Spuren von Leben auf solchen Planeten - ein Schlüsselziel der modernen Astronomie, das derzeit freilich noch in weiter Ferne liegt. Koautor Thomas Henning, Direktor am Max-Planck-Institut für Astronomie, fügt hinzu: "Hier zeigt sich das Potenzial von neuen Instrumenten wie dem Spektrografen LUCIFER, der derzeit am Large Binocular Telescope in Arizona installiert wird."

Die ersten Beobachtungen mit der neuen Methode haben bereits interessante Ergebnisse zu den Eigenschaften von Exoplaneten-Atmosphären erbracht. Bisherige Modelle basierten auf der Annahme, dass Veränderungen in der Atmosphäre vergleichsweise langsam ablaufen. Den Forschern war bewusst, dass dies eine zu starke Vereinfachung ist. Allerdings reichten die verfügbaren Beobachtungsdaten noch nicht aus, um zwischen solchermaßen vereinfachten und realistischeren Modellen zu unterscheiden konnten. Die neuen Daten lassen genau solch eine Unterscheidung zu, und ermöglichen es den Astronomen auf diese Weise, neue, realistischere Modelle für Exoplanetenatmosphären zu entwickeln.

Weitere Informationen unter:
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2010/PR100204/PR_100204_de.html
Online-Version der Pressemitteilung mit Hintergrundinformationen und weiterem Bildmaterial (inklusive hochaufgelöster Versionen).

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/pages/de/institution1413


*


Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Max-Planck-Institut für Astronomie, Dr. Markus Pössel, 04.02.2010
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 9. Februar 2010