Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


FORSCHUNG/638: PTB stellt erstes Bose-Einstein-Kondensat mit Calciumatomen her (idw)


Physikalisch-Technische Bundesanstalt (PTB) - 22.09.2009

PTB stellt erstes Bose-Einstein-Kondensat mit Calciumatomen her


Physikern in der Physikalisch-Technischen Bundesanstalt (PTB) ist es weltweit zum ersten Mal gelungen, ein Bose-Einstein-Kondensat aus dem Erdalkalielement Calcium herzustellen. Die Verwendung von Erdalkali-Atomen schafft neue Möglichkeiten für Präzisionsmessungen, beispielsweise zur Bestimmung von Gravitationsfeldern.

Der Physiker und Nobelpreisträger Wolfgang Ketterle beschrieb es einmal als "Identitätskrise" der Atome: Fängt man Atome in einer Falle und kühlt sie auf eine Temperatur nahe dem absoluten Nullpunkt, kondensieren sie - ähnlich wie Dampf zu Wasser - und nehmen einen völlig neuen Zustand an: Sie werden ununterscheidbar. Dieser kollektive Zustand heißt nach seinen geistigen Vätern Bose-Einstein-Kondensat. Physikern in der Physikalisch-Technischen Bundesanstalt (PTB) ist es nun weltweit zum ersten Mal gelungen, ein Bose-Einstein-Kondensat aus dem Erdalkalielement Calcium herzustellen. Die Verwendung von Erdalkali-Atomen schafft neue Möglichkeiten für Präzisionsmessungen, beispielsweise zur Bestimmung von Gravitationsfeldern. Denn im Unterschied zu bisherigen Bose-Einstein-Kondensaten aus Alkali-Atomen reagieren Erdalkalimetalle eine Million mal empfindlicher auf die Wellenlänge bei optischen Anregungen - eine Tatsache, die sich für super-exakte Messungen verwenden lässt. Die Ergebnisse sind nun in Physical Review Letters veröffentlicht worden.


Der quantenmechanische Hintergrund

Atome in Gasen verhalten sich bei Zimmertemperatur wie ein wilder Haufen: Sie fliegen mit unterschiedlichen Geschwindigkeiten durcheinander, prallen zusammen und werden anschließend in eine neue Richtung weitergeschleudert. Doch bei extrem niedrigen Temperaturen nahe dem absoluten Nullpunkt (- 273,15 ºC) kommen sie nahezu zum Stillstand. Zu diesem Zeitpunkt nun kommen die Gesetze der Quantenmechanik zum Tragen, die im Alltag nicht zu beobachten sind und so manchen Nicht-Physiker verstören. Die Vorstellung von Atomen als kleine Kugeln funktioniert nun nicht mehr. Vielmehr lassen sich Atome nun nur noch quantenmechanisch durch Wellen beschrieben. Wie Wasserwellen können sie sich gegenseitig überlagern. Bei einem Bose-Einstein-Kondensat sind die Wellenfunktionen von bis zu einer Million Atome so synchronisiert, dass sie sich zu einer Riesenwelle auftürmen. Diese Gebilde können bis zu einem Millimeter groß und dann photographiert werden. Der Mikrokosmos stellt sich makroskopisch dar - er wird für den Betrachter sichtbar. In den letzten Jahren wurden solche Bose-Einstein-Kondensate für vielfältige Untersuchungen zu den Grundlagen der Quantenmechanik, als Modellsystem für Festkörper oder in der Quanteninformation eingesetzt.


Die Anwendungsmöglichkeiten

Die Wellenmuster angeregter Bose-Einstein-Kondensate reagieren sehr empfindlich auf ihre Umgebung. So lassen sich durch Untersuchung dieser Muster hochempfindliche interferometrische Sensoren erzeugen, mit denen man z.B. Magnetfelder oder Gravitation messen kann. Für die Manipulation und Anregung von Kondensaten wird Licht verwendet. Alle weltweit bisher erzeugten Bose-Einstein-Kondensate haben einen gemeinsamen Nachteil: Ihre breiten optischen Übergänge lassen keine Präzisionsanregungen zu. Bei Bose-Einstein-Kondensaten aus Erdalkaliatomen (z.B. Calcium und Strontium, die beide an der PTB auf ihre Eignung als optische Uhren untersucht werden) bieten deren superschmale optische Übergänge ganz neue Möglichkeiten für Präzisionsuntersuchungen. Denkbar ist deren Einsatz auf Satelliten z.B. durch Geophysiker, die die Verformung der Erde und damit die Veränderung der Gravitation erforschen.


Das Verfahren

In der PTB ist es nun weltweit erstmalig gelungen, ein Bose-Einstein-Kondensat aus Erdalkaliatomen herzustellen. Dazu wurden 2 x 106 in einer magneto-optischen Falle vorgekühlte Calciumatome mit einer Temperatur von 20 µK in eine optische Pinzette geladen. Durch Abschwächen der Haltekraft verdampfen heiße Atome, wodurch die übrig bleibenden Atome gekühlt werden. Bei einer Temperatur von typischerweise 200 nK wird die kritische Temperatur mit 105 Atomen erreicht. Davon können etwa 2 x 104 Atome zu einem reinen Kondensat gekühlt werden.

Originalveröffentlichung
Sebastian Kraft, Felix Vogt, Oliver Appel, Fritz Riehle, and Uwe Sterr:
Bose-Einstein Condensation of Alkaline Earth Atoms
: 40Ca, Physical Review Letters (Vol.103, No.13)
URL: http://link.aps.org/abstract/PRL/v103/e130401

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/pages/de/institution395


*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Physikalisch-Technische Bundesanstalt (PTB), Imke Frischmuth, 22.09.2009
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 24. September 2009