Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


FORSCHUNG/759: Nanosäulen - Von der Pyramide zur Säule (idw)


Forschungsverbund Berlin e.V. - 14.12.2010

Von der Pyramide zur Säule


Nanosäulen wachsen aus winzigen Kristallkeimen. Diese Phase ist entscheidend für Form und Größe der Säulen. Forscher des Paul-Drude-Instituts untersuchen deshalb intensiv, was zu Beginn des Wachstums von Nanosäulen eigentlich passiert.

Winzige Säulen stehen in Reih und Glied, alle sind exakt gleich groß, ihre Durchmesser betragen nur einige hundert Atome und auch ihr Abstand ist überall gleich. Dies zu erreichen ist ein Ziel von Halbleiterphysikern wie Lutz Geelhaar vom Paul-Drude-Institut. "Für mögliche Anwendungen wie Leuchtdioden oder Minidrähte müssten Halbleiter-Nanosäulen exakt reproduzierbar in Größe und Form herstellbar sein", sagt er.

Noch ist das schwierig. Das liegt daran, dass die Minisäulen in einem faszinierenden selbstorganisierten Prozess auf der Unterlage spießen, ähnlich einem Rasen im Garten. Und wie Grashalme sind die Säulen mal größer mal kleiner, mal dicker mal dünner. Diese Selbstorganisation hat aber einen entscheidenden Vorteil, weiß Geelhaar: "Die Kristalleigenschaften sind hervorragend, solche kleinen Strukturen würde man mit Ätz- oder Lithografieverfahren in dieser Qualität kaum hinbekommen."

Genau wie Halbleiterschichten wachsen die Säulen mit Hilfe der Molekularstrahlepitaxie (MBE). Bei diesem Verfahren werden in einer Vakuumkammer die Elemente verdampft, welche als Kristall auf einer Unterlage wachsen und dabei deren Kristallstruktur übernehmen. Im Gegensatz zu Schichten können die Forscher bei Säulen viel mehr Substrate und Halbleitermaterialien kombinieren, weil Säulen auch auf Unterlagen wachsen, deren Kristallgitter eigentlich nicht passt. PDI-Forscher haben nun die Anfangsphase des Wachstums von Galliumnitrid (GaN)- Säulen unter verschiedenen Bedingungen intensiv untersucht. Sie nutzen dafür Verfahren, wie die Elektronenstrahlbeugung und die Massenspektrometrie, die es erlauben, das Wachstum zu beobachten ohne es zu unterbrechen.

Als Starter für das Wachstum können kleine Katalysatorpartikel aus Gold oder Nickel dienen. Die Forscher ließen GaN auf Saphir (Aluminiumoxid) wachsen und konnten zeigen, dass der Kristallisationskeim verschiedene Phasen durchläuft. Zunächst bildet sich eine Legierung von Nickel und Gallium, diese wechselt ihre Kristallstruktur und dann beginnt das Wachstum von GaN unterhalb des Nickelkatalysators. Beim weiteren Wachstum der Säule wird der Katalysator wie ein Deckel immer weiter nach oben geschoben. Der Zustand des Katalysators beeinflusst dabei den Durchmesser der Säulen.

Noch mehr interessieren sich die Forscher aber für Säulen, die ohne Katalysator wachsen. Denn jedes fremde Atom stört letztlich die elektrischen und optischen Eigenschaften von Halbleitern. Ein solches selbstinduziertes Wachstum passiert, wenn in der MBE-Kammer ganz spezielle Bedingungen herrschen. Als Unterlage diente den Forschern in diesem Fall eine Aluminiumnitrid-Schicht (AlN). Dessen Kristallstruktur passt mit GaN nicht exakt zusammen.

Die Forscher konnten beobachten, dass unter diesen Bedingungen zunächst kleine runde Hügel auf der Unterlage wachsen. Deren Kristallgitter ist ein wenig verzerrt, was der Kristall durch weiteres Wachstum ausgleicht. Aus den Hügeln werden stumpfe und dann spitze Pyramiden. Das Säulenwachstum beginnt schließlich mit einer Versetzung. Das heißt, das Kristallgitter ist so stark verzerrt, dass da wo eigentlich zwei Atome hingehören, nur noch eines sitzt - der Kristall wächst mit der verringerten Anzahl von Atomreihen weiter. "Dadurch ändert sich die Balance der verschiedenen Beiträge zur Gesamtenergie, was das Säulenwachstum auslöst. Der Zeitpunkt des Auftretens dieser Versetzung ist so auch bestimmend für den Durchmesser der Säule", so Geelhaar. Die Forscher hoffen über die Aufklärung der Physik solcher Prozesse dem Ziel von einheitlichen Säulen ein Stück näher zu kommen.

Nano Lett. 10, 3426-3431 (2010)
Physical Review B 81, 085310 (2010)
Nanotechnology 21, 245705 (2010)

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/pages/de/institution245


*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Forschungsverbund Berlin e.V., Christine Vollgraf, 14.12.2010
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 16. Dezember 2010