Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


FORSCHUNG/805: Wiederholte Fehlerkorrektur für den Quantenrechner (idw)


Universität Innsbruck - 26.05.2011

Der Quantencomputer wird erwachsen - Wiederholte Fehlerkorrektur für den Quantenrechner


Einen wesentlichen Baustein für den zukünftigen Quantencomputer haben Physiker der Universität Innsbruck um Philipp Schindler und Rainer Blatt als weltweit erste demonstriert: eine wiederholbare Fehlerkorrektur. Damit können die im Quantencomputer auftretenden Fehler schnell und elegant rückgängig gemacht werden. Die Wissenschaftler berichten darüber in der Fachzeitschrift Science.


Für die Datenverarbeitung gilt generell: Werden Daten abgespeichert oder übertragen, können Störungen die Informationen verfälschen oder löschen. Für herkömmliche Computer wurden Techniken entwickelt, um solche Fehler automatisch zu erkennen und zu korrigieren. Dazu werden die Daten mehrfach verarbeitet und bei Fehlern durch einen Vergleich die wahrscheinlichste Variante ausgewählt. Da Quantensysteme wesentlich empfindlicher auf Umwelteinflüsse reagieren als klassische Systeme, benötigt ein zukünftiger Quantencomputer ebenfalls einen sehr effizienten Algorithmus zur Fehlerkorrektur. Innsbrucker Quantenphysikern um Philipp Schindler und Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften haben nun einen solchen Algorithmus im Experiment realisiert. "Die Schwierigkeit besteht darin, dass Quanteninformation grundsätzlich nicht kopiert werden kann", erklärt Schindler. "Wir können die Information also nicht mehrfach abspeichern und dann vergleichen." Die Physiker bedienen sich deshalb einer Besonderheit der Quantenphysik und machen die quantenmechanische Verschränkung für die Fehlerkorrektur nutzbar.


Schnelle und effiziente Fehlerkorrektur

Um den Mechanismus zu demonstrieren, fangen die Innsbrucker Physiker in einer Ionenfalle drei Kalziumionen. Alle drei Teilchen werden als Quantenbit (Qubit) verwendet, wobei ein Ion als Informationsträger, die anderen beiden als Hilfsqubits dienen. "Wir verschränken zunächst das erste Qubit mit den beiden Hilfsbits und übertragen so die Quanteninformation auf alle drei Teilchen", erzählt Philipp Schindler. "Ein Quantenalgorithmus stellt dann fest, ob und welcher Fehler dabei auftritt. Worauf der Algorithmus den Fehler selbstständig korrigiert." Nach der Korrektur werden die Hilfsbits durch optisches Pumpen mit Hilfe eines Laserstrahls wieder zurückgesetzt. "Dies ist das eigentlich neue Element in unserem Experiment, das die wiederholte Fehlerkorrektur erst möglich macht", sagt Rainer Blatt. "Befreundete amerikanische Physiker haben vor einigen Jahren die prinzipielle Funktionsweise der Quantenfehlerkorrektur demonstriert. Mit unserem Mechanismus ist es nun aber erstmals möglich, Fehler wiederholt und effizient zu korrigieren."



Das Quantenbit (blau) wird mit den beiden Hilfsbits (rot) verschränkt. Tritt ein Fehler auf, wird der Zustand des gestörten Quantenbits mit Hilfe der beiden anderen wieder hergestellt. - Grafik: © Harald Ritsch

Das Quantenbit (blau) wird mit den beiden Hilfsbits (rot) verschränkt. Tritt ein Fehler auf, wird der Zustand des gestörten Quantenbits mit Hilfe der beiden anderen wieder hergestellt.
Grafik: © Harald Ritsch



Weltweit führend

"Damit ein zukünftiger Quantencomputer tatsächlich Realität wird, benötigen wir einen Quantenprozessor mit zahlreichen Quantenbits", sagt Schindler. "Außerdem bedarf es Rechenoperationen, sogenannter Quantengatter, die nahezu fehlerfrei arbeiten. Der dritte wesentliche Baustein ist eine funktionierende Fehlerkorrektur." Die Forschungsgruppe um Rainer Blatt arbeitet seit vielen Jahren weltweit führend an der Realisierung des Quantencomputers. Vor drei Jahren präsentierte sie die ersten Quantengatter mit einer Güte von über 99 Prozent. Nun haben die Forscher einen weiteren wesentlichen Baustein geliefert: eine funktionsfähige, wiederholte Quantenfehlerkorrektur. Die Forschungsarbeit wurde unter anderem vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission, dem Europäischen Forschungsrat und der Tiroler Industrie unterstützt und nun in der Fachzeitschrift Science veröffentlicht.


Werden Daten abgespeichert oder übertragen, können Störungen die Informationen verfälschen oder löschen. Das gilt auch für den Quantencomputer. - Grafik: © Harald Ritsch

Werden Daten abgespeichert oder übertragen, können Störungen die Informationen verfälschen oder löschen. Das gilt auch für den Quantencomputer.
Grafik: © Harald Ritsch


Publikation:
Experimental repetitive quantum error correction. Philipp Schindler, Julio T. Barreiro, Thomas Monz, Volckmar Nebendahl, Daniel Nigg, Michael Chwalla, Markus Hennrich, Rainer Blatt. Science am 27. Mai 2011. DOI: 10.1126/science.1203329

Ein Video-Interview mit Rainer Blatt und Philipp Schindler finden Sie unter:
http://streaming.uibk.ac.at/medien/c115/c115122/iqoqi/science_fehlerkorrektur.mov

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution345


*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Universität Innsbruck, Dr. Christian Flatz, 26.05.2011
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 31. Mai 2011