Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

MELDUNG/265: Der stabilste Laser der Welt (idw)


Physikalisch-Technische Bundesanstalt (PTB) - 12.09.2012

Der stabilste Laser der Welt

Neuer Silizium-Resonator hält die Frequenz eines Lasers so stabil wie nie zuvor - wichtig für noch bessere optische Atomuhren



Ein Laser mit einer bisher unerreichten Frequenzstabilität - das ist das Ergebnis einer Forschungskooperation der Physikalisch-Technischen Bundesanstalt (PTB) innerhalb des Exzellenzclusters QUEST (Centre for Quantum Engineering and Space-Time Research) mit Kollegen aus dem amerikanischen NIST (National Institute of Standards and Technology)/JILA. Ihre Entwicklung, über die sie in der Fachzeitschrift Nature Photonics berichten, ist wichtig für die höchstauflösende optische Spektroskopie z. B. von ultrakalten Atomen. Doch vor allem steht jetzt ein noch stabilerer Abfragelaser für den Einsatz in optischen Atomuhren zur Verfügung.

Für den Betrieb optischer Atomuhren werden Laserquellen benötigt, die Licht mit möglichst gleichbleibender Frequenz ausstrahlen. Kommerzielle Lasersysteme sind ohne weitere Maßnahmen hierfür ungeeignet. Damit die Laser aber eine möglichst konstante Frequenz abgeben, stabilisiert man sie beispielsweise mithilfe optischer Resonatoren. Diese setzen sich aus zwei hochreflektierenden Spiegeln zusammen, die durch einen Abstandshalter in fester Entfernung gehalten werden. Das Entscheidende: In Analogie zu einer Orgelpfeife bestimmt die Resonatorlänge, mit welcher Frequenz Licht im Resonator anschwingen kann. Für einen stabilen Laser wird folglich ein Resonator mit hoher Längenstabilität benötigt, d. h. der Abstand zwischen den Spiegeln muss so gut wie möglich konstant gehalten werden.

Moderne resonatorstabilisierte Lasersysteme sind mittlerweile technisch so ausgereift, dass ihre Stabilität nur noch durch das thermische Rauschen der Resonatoren begrenzt ist. Ähnlich zur Brown'schen Molekularbewegung sind die Atome in dem Resonator ständig in Bewegung und schränken damit seine Längenstabilität ein. Bisherige Resonatoren bestanden aus Glas, dessen ungeordnete und "weiche" Materialstruktur besonders starke Bewegungen zeigt. Für den neuen Resonator hat die Forschergruppe einkristallines Silizium verwendet, ein besonders "steifes" und deshalb rauscharmes Material. Abgekühlt auf eine Temperatur von 124 K (-149 Grad Celsius) zeichnet sich Silizium durch eine verschwindend kleine Wärmeausdehnung aus und noch vorhandenes thermisches Rauschen wird zusätzlich reduziert. Um den Resonator bei dieser Temperatur betreiben zu können, mussten die Forscher zunächst einen geeigneten schwingungsarmen Kryostaten entwerfen. Das Resultat kann sich sehen lassen: Durch Vergleichsmessungen mit zwei Glasresonatoren konnten die Wissenschaftler eine bisher unerreichte Frequenzstabilität von 1 · 10-16 für den auf den Silizium-Resonator stabilisierten Laser nachweisen.

Damit können sie ein wichtiges Hindernis bei der Entwicklung noch besserer optischer Atomuhren aus dem Weg räumen. Denn die Stabilität der dabei verwendeten Laser ist ein kritischer Punkt. Das "Pendel", also das schwingende System einer solchen Uhr, ist eine schmale optische Absorptionslinie in einem Atom oder Ion, deren Übergangsfrequenz von einem Laser ausgelesen wird. Die Linienbreite dieser Übergänge beträgt typischerweise wenige Millihertz, ein Wert, der durch die begrenzte Längenstabilität von Glasresonatoren nicht erreicht werden konnte.

Aber jetzt ist es möglich. Der Laser, der auf den Silizium-Resonator stabilisiert ist, erreicht eine Linienbreite von weniger als 40 mHz und kann daher dazu beitragen, bei der Entwicklung von optischen Atomuhren in eine neue Dimension vorzustoßen. Und auch die optische Präzisionsspektroskopie, ein weiterer Forschungsschwerpunkt des Exzellenzclusters QUEST, kann entscheidende Impulse bekommen.

"Für die Zukunft sehen wir noch Spielräume bei den optischen Spiegeln, deren thermisches Rauschen die erreichbare Stabilität begrenzt", erklärt PTB-Physiker Christian Hagemann. Daher wollen die Forscher zukünftig zu noch tieferen Temperaturen gehen und neuartige hochreflektierende Strukturen verwenden, um die Frequenzstabilität noch einmal um eine Größenordnung verbessern zu können. es/ptb

Wissenschaftliche Veröffentlichung:
Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J.:
A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity.
Nature Photonics, DOI: 10.1038/nphoton.2012.217,
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution395

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Physikalisch-Technische Bundesanstalt (PTB),
Dipl.-Journ. Erika Schow, 12.09.2012
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 15. September 2012