Schattenblick →INFOPOOL →UMWELT → INTERNATIONALES

MEER/163: Schlammvulkane als Quelle des Treibhausgases Methan (idw)


Max-Planck-Institut für marine Mikrobiologie - 11.11.2014

Mehr Methan aus der Tiefe des Meeres: Schlammvulkane als Quelle des Treibhausgases Methan

von Manfred Schlösser



Der Schlammvulkan Haakon Mosby in der Barentssee vor Norwegen stößt jährlich mehrere hundert Tonnen des Treibhausgases Methan aus. Ein Forscherteam unter der Leitung des Bremer Max-Planck-Instituts berichtet jetzt über seine Langzeitbeobachtungen in der Zeitschrift NATURE Communications. Über 431 Tage lang sammelten sie Temperatur-, Druck- und pH-Daten und dokumentierten mit einer Unterwasserkamera 25 Ausbrüche von Schlamm und Gas. Vier dieser Ausbrüche waren so gewaltig, dass sie die Unterwasserlandschaft drastisch veränderten. Anhand ihrer Daten berechneten die Wissenschaftler, dass aus dem Schlammvulkan ungefähr 10-mal mehr Gas austritt als bislang angenommen.

Foto: © M. Schloesser, MPI Bremen

Schema des Schlammvulkans im Querschnitt. Mit einem Kilometer im Durchmesser erhebt sich der Schlammvulkan Haakon Mosby nur zehn Meter über das Terrain.
Foto: © M. Schloesser, MPI Bremen

An Land sind Tausende dieser Schlammvulkane bekannt; und auch im Ozean, zwischen 200 und 4000 Meter Wassertiefe, werden immer mehr solcher methanspeienden Strukturen gefunden. So der Haakon Mosby Schlammvulkan vor Norwegen. Wissenschaftler schätzten bislang, dass Unterwasservulkane jährlich 27 Millionen Tonnen zum weltweiten Methanausstoß beitragen, das sind mehr als 5% der insgesamt 500 Millionen Tonnen. Doch könnte der Anteil auch noch höher liegen, da nicht alle Kontinentalränder vermessen sind und es keine Dauerbeobachtungsstationen im Meer gibt.

Foto: Dirk de Beer, MPI Bremen

Die Unterwasserplattform LOOME (Long Term Observatory On Mud-volcano Eruptions) beobachtete das Geschehen am Haakon Mosby Mud Volcano über 431 Tage lang.
Foto: Dirk de Beer, MPI Bremen

Der innere Rhythmus der Schlammvulkane

Strömen Gas und Schlamm kontinuierlich aus oder gibt es einen chaotischen Rhythmus, ähnlich wie bei einem Schluckauf? Ist es ein Fließgleichgewicht, das nur manchmal durch Eruptionen gestört wird? Im Fließgleichgewicht ändern sich die einzelnen Ströme nicht. Gas steigt kontinuierlich von unten aus dem Schlot auf, ein bestimmter Teil davon geht in die Wassersäule über, der Rest wird durch mikrobielle Prozesse im Meeresboden inaktiviert. So ein Fließgleichgewicht können Forscher mit Sensoren gut erfassen, mit mathematischen Formeln beschreiben und Prognosen aufstellen. Eruptionen finden aber nur selten statt - um sie in der Tiefsee zu beobachten, brauchen Meeresforscher dauerhafte Observatorien. Ein solches haben die Wissenschaftler um Dirk de Beer entwickelt.

Ein biologischer Filter aus Mikroorganismen inaktiviert das Methan

Man weiß, dass ein Großteil des Methans nicht in die Atmosphäre gelangt, denn besondere methanfressende Mikroorganismen wandeln das Treibhausgas schon im Meeresboden zu Karbonat um, sofern sie ausreichende Konzentrationen an Oxidationsmittel wie Sulfat finden. Diese Mikroorganismen sind sehr langsam, denn ihre Generationszeit beträgt 3-6 Monate. Doch was passiert, wenn sie durch Eruptionen und Umwälzungen des Meeresbodens gestört würden?

Störung des Fließgleichgewichts

Strömt das Gas kontinuierlich, funktioniert dieser biologische Filter am Meeresboden gut. Bei einer Störung dieses Fließgleichgewichts, also einer Eruption, sind die Mikroorganismen schlicht überfordert und das Gas steigt fast ungehindert in die Wassersäule auf. Das passiert, wenn die austretenden Fluide sehr schnell ausströmen und die Oxidationsmittel nicht ausreichend nachfließen. Oder wenn die Eruption die Schichtung des Schlamms so durcheinandergewirbelt hat, dass der Lebensraum der methanfressenden Mikroorganismen zerstört.

Das Langzeit-Observatorium nimmt kontinuierlich Daten auf

Um zu sehen, wann und wie oft der Vulkan ausbricht, stationierten die Forscher eine Plattform mit verschiedenen physikalischen und chemischen Sensoren auf dem Haakon Mosby-Schlammvulkan in über 1200 Meter Wassertiefe. Der Vulkan deckt eine kreisförmige Fläche mit einem Kilometer im Durchmesser ab und erhebt sich nur zehn Meter über das umliegende Terrain. Er wird von eiskaltem Bodenwasser überströmt - doch je tiefer man im Meeresboden misst, desto wärmer wird es. Dr. Tomas Feseker vom MARUM Zentrum für marine Umweltwissenschaften der Universität Bremen sagt: "Wir konnten im Zentrum des Schlots in einem Meter Tiefe über 25 Grad Celsius messen, die Wärme wird durch aus der Tiefe aufsteigende gasreiche Fluide geliefert." Mit dem Observatorium LOOME wollten die Forscher prüfen, ob die im Meeresboden dieses Schlammvulkans befindlichen Gashydrate manchmal durch Hitzepulse aufgelöst werden und als Gas entweichen können. Sie stellten dazu im Juli 2009 ihr Observatorium nahe dem aktiven Zentrum auf und verlegten mit Hilfe des ferngesteuerten Roboters MARUM-QUEST an Bord der FS Polarstern die Kabel zu ihren Sensoren. Im Laufe des Jahres veränderte sich der Vulkan mehrmals. Die Thermometer zeigten steigende Temperaturen, Gase stiegen auf und drückten den Meeresboden um über einen Meter nach oben und um über hundert Meter zur Seite. Anschließend sank der Boden wieder langsam in sich zusammen.

10-mal mehr Methan als bisher angenommen

Dr. Dirk de Beer vom Max-Planck-Institut für Marine Mikrobiologie und wissenschaftlicher Leiter des sogenannten LOOME Observatoriums erläutert die Ergebnisse: "Diese Eruptionen werden vom aufsteigenden Gas aus tieferen Schichten des Vulkans angetrieben. Zusätzlich führt jede Eruption zu Temperaturerhöhungen an der Oberfläche und die im Schlamm gefrorenen Gashydrate gehen vom festen Zustand in den gasförmigen über. Das Methan kann in die Wassersäule aufsteigen. Unsere Berechnungen zeigen, dass ungefähr 10-mal mehr Methan austritt als bisher angenommen. Ein Großteil dieses im Wasser gelösten Gases erreicht die Atmosphäre aber nicht, sondern wird beim Aufstieg im Meerwasser verteilt und schließlich von Bakterien aufgezehrt."

Die Forscher haben zehn Jahre alte Meeresboden-Karten des Forschungsgebiets mit heutigen Befunden verglichen und festgestellt, dass sich die Gestalt des Meeresbodens deutlich verändert hat durch Sedimentverschiebungen. Diese horizontale Bewegungen konnten die Forscher genau rekonstruieren, denn ihre tonnenschwere Temperatur-Messlanze legte im Laufe des Jahres eine Strecke von 165 Metern zurück. Überraschend war, dass bei den Eruptionen der Vulkan an den Rändern nicht überlief. Das bedeutet, dass der Schlamm wieder in den Vulkan zurückgelaufen sein muss. Eine wichtige Erkenntnis dieser Studie ist, dass die Eruptionen den biologischen Filter im Meeresboden schädigen, der das meiste Methan des Haakon Mosby Schlammvulkans zurückhält. Prof. Dr. Antje Boetius, Fahrtleiterin der Expeditionen und Mitautorin der Studie, sagt: "Wir haben durch die erstmals ganzjährige Beobachtung des Schlammvulkans viel über sein Verhalten und den Einfluss auf die Umwelt gelernt. Da Eruptionen solcher Schlammvulkane an Land wie im Meer erhebliche Schlammrutschungen verursachen können und eine erhebliche Quelle von Gas sind, sollte es mehr Dauerbeobachtungsstationen für sie geben."

Beteiligte Institute
  • Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
  • MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
  • GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
  • HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, 27515 Bremerhaven, Germany
  • IFREMER, Institut Carnot EDROME, RDT/SI2M F-29280 Plouzané, France
  • IFREMER, Institut Carnot EDROME, REM/EEP, Laboratoire Environnement Profond, F-29280 Plouzané, France
  • Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Danksagung: Das Projekt LOOME war Teil des Europäischen Programmes ESONET und von ihm gefördert, weitere Förderer sind die Helmholtz Gemeinschaft, die Max-Planck-Gesellschaft und das Leibniz-Programm der DFG.


Weitere Informationen finden Sie unter
http://www.mpi-bremen.de/Forschung_am_Tiefsee-Schlammvulkan_Haakon_Mosby.html
http://www.esonet-emso.org/ (Webseite Europäischer Meeresboden Observatorien)

Die gesamte Pressemitteilung inkl. Bilder erhalten Sie unter:
http://idw-online.de/de/news612618

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution536

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Max-Planck-Institut für marine Mikrobiologie, Dr. Manfred Schloesser, 11.11.2014
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 17. November 2014